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Structure and stability of the interface between a strained crystal and a shearing liquid
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The results are presented from nonequilibrium molecular dynamics simulations of the stationary nonequi-
librium interface between a shearing liquid and its strained crystal. The penetration of the velocity field into the
crystal is shown to increase with an increasing shear stress along the coexistence line. Slip and creep com-
pensate within the interfacial region to produce an effective flow boundary well described, macroscopically, by
a standard stick boundary condition. The shear flow within the interface is found to involve intermittent
stick-slip motion, with the slip accompanied by disordering. A theoretical treatment of the interfacial stability
is proposed, based on the competing rates of crystallization and erosion, and is found to provide a reasonable
representation of the simulated stress-temperature phase diagram.
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[. INTRODUCTION interface. In this paper, we explore the structure and fluctua-
tions of the crystal-liquid interface along the nonequilibrium
In this paper, we consider the behavior of the crystal-melcoexistence line. We propose that the observed nonequilib-
interface when subjected to a shear stress. Unlike the shafpim coexistence is the result of balancing the rate of crystal
solid-liquid interface between two substances with widelygrowth with the rate of surface erosion by the shearing liquid
differing melting points, the crystal-melt interface is structur-[2]-
ally diffuse, extending over 3—10 molecular diameters. What
kind of boundary does such a fragile interface pose for the Il. ALGORITHM AND METHODOLOGY
flow field? What influence does this flow have back on the ) ) )
interface itself? There is considerable interest in using com- 1he model and algorithm have been described in some
puter simulations to understand the molecular nature of théetail previously{2,3], and so we present here only a sum-
liquid velocity and stress fields in the vicinity of solid walls Mary of our calculations. Our simulations involve the inte-
[1]. The problem we consider here is rather different due t@ration of classical equations of motion fbr=2592 par-
the proximity to the solid’s melting point. It is possible, for ticles interacting via a 12-6 Lennard-Jones potentig),
example, to completely melt the solid if a sufficiently high 1 6
shear rate is imposed on the liquid. d(r)=4el(alr)==(alr)”]. @)

In Refs.[2,3], we have reported the stable coexistence i ) .
between a strained crystal made up of Lennard-Jones paf€ following units are used throughout the paper: tinie

ticles and its shearing melt as observed in nonequilibriuni? Units of 7=a(m/€)%, mass has units of, distancer is in
molecular dynamic§NEMD) simulations. We have demon- units ofa, the tempera_lturé’ |52|n units ofe/kg, and pressure
strated that the nonequilibrium coexistence can neither aris@"d stress are in units efa®. For reference, the average
from the mechanical instability of the bulk solid nor from the collision time (defined as the first zero of the velocity auto-
minimization of some nonequilibrium analog of a free en-correlation functionis ~0.1r.
ergy. The reader is referred to these papers for details of this Periodic boundary conditions apply along tkeand z
argument. At equilibrium, coexistence is determined by the2xes. Walls bound either end of the cell along ytexis. The
condition that the chemical potentials of the two phases b&alls were modeled by pinning particles to specified posi-
equal. In the case of the nonequilibrium coexistence betweefions, either those of a perfedtill) layer of the face-
crystal and liquid, we have eliminated any extension of thiscentered-cubi¢fcc) lattice or to those of a single liquid con-
condition to include nonequilibrium analogs of the chemicalfiguration, via a harmonic potential. The spring constant used
potential of the bulk phases. Instead, we must replace thtr this potential waksping=57.1. Wall particles also inter-
condition of chemical potential equality with the more gen-act with each other and the liquid particles by the same
eral condition that the nonequilibrium crystal-liquid interface Lennard-Jones potential as govern the liquid-liquid interac-
is stationary. Previously, Olmsted and [4] have argued tons.
that phase coexistence in a liquid of rigid rods under shear All of the results presented are for a normal pressure
requires the inclusion of gradient terms in the equations oPyy=3.5 and a time step aft=0.004. A constant shear rate
motion. The apparent generality of the importance of thevas applied by moving each wall by a displacementaf
interfacial regions in establishing coexistence under shear0.5yL At per time step in opposite directions, wheyrés
motivates this NEMD study of a stationary nonequilibrium the applied shear rate,, is the distance between the walls,
andAt is the time step. The crystalline wall was aligned such
that the shear gradient lies normal to tid1) plane, while
* Author to whom correspondence should be addressed. Electronttie shear flow directiofalong thex axis) lies parallel to the
address: peter@chem.usyd.edu.au easy slip(011) direction.
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Two types of thermostats have been used, a wall thermo- 1.5 . & wal thermostat
stat and a homogeneous thermostat. The wall thermostat res- c v, S BROGEOEDLS et
caled only the temperature of the wall particles, system par-
ticles being indirectly thermostated through collision with

. 0.5
the walls. The temperature was calculated using
N 0
LY 2 o 065 075 085 095
TwaII: 2 pix+piy+piz ) (2) ’ ' ' T '
3Nwall i=1

h ; h £ th f FIG. 1. The shear stress at crystal-liquid coexistence as a
where pi refers to thex component of the momentum Of ¢,,qion of temperaturd. (The solid line is simply a guide to the

particlei and Ny, is the r_1umber of particles in the wall. eye) Data obtained from wall and homogeneous thermostats are
This method of thermostating produces a temperature gradjzcjyded. In the former case, where there is a temperature gradient,
ent between the heat source, in this case the frictional heatinge have used the interfacial temperature to define the appropriate

in a shearing liquid, and the heat sinks in the walls. Antemperature for the state. The crystal yield stress is shown as a
alternative thermostat avoids this gradient by applying a hodashed line.

mogeneous rescaling of the components of the particle mo-

menta along the shear gradiefy) and vorticity (z) direc-  ture, presented in Fig. 1, can be interpreted as a nonequilib-
tions. To accommodate the spatial variation in the two-phasgum phase diagram in the stress-temperature flah&The
system, we divided the cell into layers in thez plane, the dashed line in Fig. 1 corresponds to the yield stress of the
height of each layer is equal to the spacing betweergft®)  bulk crystal[3].) We have show2,3] that the relative vol-
layers in the perfect crystal structure. For each cell, the avames of the two phases obeys a standard lever rule with
erage momentép,)..; and(p,).e; Was calculated, and the respect to the overall shear rate of the sample. We shall now
values ofp, andp, for each particle within the layer were examine the crystal-liquid interface at a number of points
rescaled to maintain a constant temperature in these compalong the nonequilibrium coexistence line.

nents. As reported in Ref$2,3], we find no effect of the

thermostat choice on the position of the nonequilibrium B. Interface structure

solid-liquid coexistence lin& the interfacial temperature is

. To measure the in-plane hexagonal order within layers
used as the system temperature in the case of wall therm P 9 Y

%'arallel to the walls, we introducé(l), the in-plane order of

stats. thelth layer, defined as
The instantaneous normal pressixg was calculated us- yer,
ing the expression 1 N 1 Ni N
X(h=—=— 2, cog66;), 5
( ) N| ;l N|(N|_1) jgl kzij 5( Ijk) ( )

1
Pyy:v 2 Qiniy+Z pizy’ 3)
: : where 6 is the angle in the-z plane betweem;; andry,
the vectors joining the centers of partidleand two of its
nearest neighbors, particleandk. N; is the number of near-
est neighbors to particieandN, is the number of particles in
thelth layer. A perfect in-plane hexagonal order would give
a value ofX;=1. Particles were considered nearest neigh-
bors of particlel if they lay within a distance of,;/0.8 in
dL, o the X-z plane and ,,/3 in they direction, yvhererhcp is the
at @( Pyy—=Pyy), (4) distance between the nearest neighbors in the perfect hexago-
nal structure and,, is the distance between 111 layers in

wherelL, is they dimension of the cellP,, is the instanta- the perfect fcc structure.
neous value of the normal pressué, is the desired normal The average profiles of X are plotted f6~0.7, 0.788,
pressure, and)p determines the rate at which excursions@"d 0-85 in Fig. 2 against the displacemgratong the sur-

from the target value are damped. A value@f=10 was &c€ normal. A homogeneous thermostat has been used for
; ; ; ' all simulations reported here. The equilibrium melting tem-
used in all constar®,, simulations. p q g

perature is 0.907. The origin along tlyeaxes is defined as
the point at which the instantaneous valueXoéquals 0.5.
Apart from a slight broadening of the interface at the lowest
temperature(and highest shear stregssve find very little

A. The nonequilibrium coexistence curve variation in the interface structure as we move along the
nonequilibrium coexistence line.

whereF;, andq;, are the component of the total force on
particlei and the position vectors for particlealong they
Cartesian axes, respectively. A Nedeover algorithm[5]
was used to hold the average valueRyf, constant, the time
evolution of they dimension of the celll.,, being

Ill. STRUCTURE AND FLOW AT THE STATIONARY
NONEQUILIBRIUM INTERFACE

In Refs.[2,3] we established that the Lennard-Jones liquid
under shear can coexist with its crystalline solid. Specifically,
we studied the fcc crystal whose interface was parallel to the
(111) plane and with shear flow parallel to tl&l0) direc- In contrast to the interfacial structure, the profile of the
tion. The plot of the coexistence shear stress against temperaverage velocity along the gradient direction exhibits a sig-

C. Velocity field and effective boundary conditions
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FIG. 2. The profile for the crystalline order parametedefined FIG. 4. The graphical estimate of the stick length from the cal-

in Eq. (5), and the average velocity,) in the direction of the shear culated shear profiles &t=0.7, 0.788, and 0.85.
flow at T=0.7 (squares 0.788 (crosses and 0.85(circles. The
profiles have been averaged over 120 000 time steps. The origin iRig. 3, would give a positive slip length. In the case of the
y is defined as the point at whick=0.5 in the average structure diffuse interface, there is some ambiguity as to which defi-
profile. The velocity(v,) is measured relative to the crystalline nition of the interfacial position is the most physically rel-
wall. evant. A definition based on interfacial structure, for ex-
ample, has no obvious relevance with respect to fluid flow.
nificant change with temperature and stress. We have calclistead, we shall define the “hydrodynamic” surface to lie at
lated the average velocity along the flow directionas a  the point at which the actual velocity difference between
function of y, again measured from an origin fixed on the crystal and liquid drops first below some small threshold,
surface position. In Fig. 2, we also plot the average sheaghosen here to be 0.06. As shown in Fig. 4, the calculated
velocity againsy at the same three points along the coexist-slip lengths aff =0.7, 0.788, and 0.85 are, respectively, 2.4,
ence line. We note two changes as one moves along thb4, and 1.1. These lengths are considerably smaller than the
nonequilibrium coexistence line towards lower temperaturegnterfacial profile width of roughly 4, measured frokequal
First, the velocity field penetrates into regions of higher crysto 90% of the bulk crystal value tX equal 10% of the
talline order. Second, the gradient of the velocity increases igrystal value. Despite the clearly nonlinear character of the
the liquid adjacent to the surface. This increase in the straiffow field at the lowest temperature, these small slip lengths
rate occurs within the interfacial region suggesting an ensuggest that the crystal-melt interface behaves like a simple
hanced slip associated with the sliding of ordered layers. stick boundary. We conclude that the enhanced slip in the
We shall quantify surface slip in terms of a “slip length.” liquid side of the interface is almost completely compensated
To define this length, we extrapolate the velocity field farby the creep flow deeper into the crystal.
from the interface to the point where tliextrapolated ve- How does the velocity field correlate with the structural
locity equals that of the bulk crystal. This construction isfield? In Fig. 5, we combine the information in Figs. 3 and 4
shown in Fig. 3. Typically{6], one would then define a slip and plot the average velocifyneasured with respect to the
length as the distance along the surface normal between thigystal wal) against the crystal ordeX for the three state
point and the position of the wall. A length of zero corre- points. We find that, as the temperature decreéaes shear
sponds to stick boundary conditions, while a negative lengtistress increasgsslipping occurs at layers of increasing or-
characterizes the degree of boundary slip between crystal art¢r. We shall define the onset of slipping to be where the
liquid. A creep flow at the wall, indicated schematically in average velocity exceeds 0.06. The definition is, of course,
arbitrary. We can then determine the maximum value of crys-
tal order, calledX;,, at which slipping takes place. The

1.5 4
1.2 4 -=-T=0.7

<V X > <V, > —*T=0.788
0.9 -o-T=0.85
0.6 -
0.3 | K

- . B . B 0 !
FIG. 3. Qualitative sketches of flow velocity profiles at a diffuse 0 05 x 1

interface for the cases, whe(@ slip and(b) creep flow occur in the

interface region. The position of the wall boundary as the point FIG. 5. The average flow velocity,) relative to the crystalline
where the shear velocity drops below some chosen threshold iwall is plotted against the in-layer order paramexefor T=0.7,
indicated. The appearance of negative and positive stick lerggths 0.788, and 0.85. The figure highlights the increasing penetration of
in (a) and(b), respectively, are indicated. shear velocity into regions of substantial crystalline order.
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FIG. 6. A plot of Xgj;, /X4y VS shear stress along the coexist-
ence curve.
ratio Xgjip /Xy is plotted againsfl in Fig. 6. We find a 0.00 4 2 " =
steady increase in this ratio with decreasing temperature. A ’ y '
this ratio approaches 1 the penetration depth of the shear
flow into the crystal will diverge. FIG. 8. The variance (X;—(X?))2)/(Xy)? of the interfacial

The concept of a penetration depth of the shear flow int@tructur_e_ through the interface at equilibriufi=0.907) and three
the crystal appears to be a useful way of characterizing th@or?equnlbrlum statesf =0.85, 0.788, ar?d 0.7. Note the nonmono-
nonequilibrium interface. We have defined this lengths tonic temperature dependence of the interfacial structural fluctua-

. - v tions with temperature. The origin gfis chosen here as the posi-
the distance betweeXi(y) =0.1 andX(y) =Xsip, as shown tion where the average order parameter equals 0.5, i.eavérage

?n Fig. 6. A plqt of the pgnetration dgpthvs the shear stress interfacial position rather than thiestantaneougposition.
is shown in Fig. 7. We find that the interface of the Lennard-

Jones crystal is penetrated to a depth that increases substan-IV. FLUCTUATIONS AT THE NONEQUILIBRIUM
tially as the shear stress is increased. We conclude that the INTERFACE

nonequilibrium crystal-liquid interface includes a layer of In Fig. 8, we plot the variance of the in-layer structote
shearing crystal whose thickness increases rapidly with she%rs a fun(.:tio’n of the position through the interface, relative to
stress. Previous simulations of the nonequilibrium phase diafhe value ofX, the structure in the bulk crystal ,Note that
gram of a colloidal crystal7,8] considered the coexistence a different de);‘tilr{ition of the zero along theaxes .has been
between ashearingcrystal and the disordered phase. Light used here. The one used in the preceding section would con-
scattering experimen{®] and simulation$7,8] demonstrate strain the .fluctuation in order at=0 to be zero. In Figs. 8
that the shearing colloidal crystals become unstable at so d 10 we have defined the origin to be the boint at Which
critical shear rate. Such an instability would curtail the di-dIhe time average oK equals 0.5. We find a nonmonotonic
dependence on the amplitude of structural fluctuations as a
flinction of how far one has moved along the nonequilibrium

sary to understand the role that such an instability might pla3(:oexistence line from the point of zero shear stress. Begin-

in the Lennard-Jones system. ning at T,,=0.907, the equilibrium coexistence point, the

amplitude of the fluctuations at the center of the interface
5 drops sharply as the shear rate of the liquid increases and the
* temperature decreases. This trend is eventually reversed. At
4 - T=0.7, the lowest temperature and highest shear stress stud-

ied here, the structural fluctuations have increased in ampli-

d 3 tude compared with the fluctuations B¢ 0.788. These ob-
. servations suggest the following picture. The thermal

interfacial fluctuations present at equilibrium are suppressed

2 * by the combination of liquid shear flow and decreasing tem-
perature. With increasing shear rate and the associated in-
T crease in flow penetration into the crystal region, the ampli-
tude of interfacial fluctuations eventually increase as shear-
0 ' ' driven fluctuations begin to dominate.
0 0.5 1 The structural fluctuations of the interface at high liquid

© shear rates must be strongly coupled to the fluctuations in the

FIG. 7. The penetration depth(as defined in the texplotted  shear velocity field in the liquid. There is, of course, no
against shear stress analog to this coupling at the equilibrium coexistence. In Fig.
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FIG. 9. The time dependence of the struct¥r@and the strain
ratedy/dt averaged over a single layer &&= 0.85 under a homo-

geneous thermostat. The layer was chosen as the one immediate  _g 39 . .
adjacent(on the liquid sid&to the point at whichkX=0.5. Note the -60 -40 -20 00 20 40 60 80

clear transitions between stick and slip and the accompanying large y

structural fluc_tuatlons. The strain rate of a single layer was calcu- FIG. 10. The cross correlation (X, —(X;))(vxi—(v,))/

lated as the dlﬁgrenpe betwc_een the average shear veIO(_:lty of.a'lay wadyc./dt) between the fluctuations in the structure and the
along the ﬂqw direction and its neighbor on the crystal side, divide Shear velocity through the nonequilibrium interface Tat 0.85,

by the spacing b_etvyeen layers. The d_ata)(@mddy/dt have been 0.788, and 0.7. The actual strain rate at coexistahgg/dt de-
c_oars_e-gramed In time to reduce noise, the average taken 0Verp""ends on temperature. Note the increasing negative correlations in
time interval of 3. the interface associated with the disordering accompanying layer

9 we have plotted the time dependence of the in-layer strucsihp'

ture X and the strain rately/dt for a single layer in the )
nonequilibrium crystal-liquid interface at=0.85(homoge- rates of exchange of material between the two phases across

neously thermostatedThis particular layer has a time aver- the interface. The thermodynamic prescription of defining
aged structural order parameter of slightly less than 0.5 angoexistence as the equality of the respective chemical poten-
so represents the behavior at the interface center. The straiglS is considerably more convenient, since it avoids having
ratedy/dt of a layer is calculated as the difference betweerfO deal with questions of specific kinetic processes, the exact
the average shear velocity of a layer and its neighbor on theharacter of the interface, and so on. In the present case
crystal side, divided by the spacing between layers. The crydnvolving a crystal and a shearing liquid, however, we have
talline order in the selected layer undergoes large and abrugfoWn[2,3] that no reasonable definition of an “effective”
fluctuations in time. The fluctuations in the strain rate showchemical potential for the shearing liquid can account for the
similar abrupt variations, but of a more bimodal characteiobserved coexistence with the strained crystal. From the

with the layer either at rest with respect to its more ordered?0int of view of the kinetic picture of coexistence, this result

transient stick-slip behavior is strongly correlated with theCrystal and the shearing liquid depend explicitly on proper-

structural fluctuations. Layer slipping is always accompaniedi€s of the nonequilibrium interface, in contrast to the situa-
by layer disordering. This correlation can be quantified as 4i°n at equilibrium. In this section, we shall consider a
negative cross correlation between fluctuations in order angimple treatment of the kinetics of the nonequilibrium
shear velocity, shown in Fig. 10. Simulations of stick-slip crystal-liquid interface to account for the observed coexist-
behavior of thin liquid film confined between crystalline €Nce.

walls [10] exhibit a similar correlation between shearing and_ The following model involves two major simplifications.
disorder. The first is to decompose the interfacial kinetics into two

separate processes: crystallization governed only by the su-

percooling, and the mechanical disruption of the interfacial

structure governed by the shear flow in the interfacial region.

The second assumption, dealt with below, concerns the treat-
The stability of coexistence between any two phases cament of the rate of mechanical disruption.

in principle, be described in terms of an equality between the From the first assumption, we estimate the crystallization

V. EROSION AND THE KINETIC CHARACTER
OF NONEQUILIBRIUM COEXISTENCE
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rate as simply that expected fomanshearindiquid whose 19
supercoolingAT is the difference between the equilibrium

freezing temperature and the temperature of the supercooled G
liquid. In Refs.[2,3], we have shown that an increase in the

solid chemical potential due to shear strain is insignificant.

While this provides some justification for the neglect of the

shear stress at this point, the real simplification introduced

here is the to neglect the role of the liquid shear flow in
calculating this crystallization rate. The idea is that one can

0.5 -

“bundle” all of the shear-structure interaction into a separate 0 , ‘ ,
rate of mechanical disruption of the surface. This conceptual 0.65 0.75 0.85 0.95
separation of the two interfacial processes draws some mod- T

est encouragemerif not actgal suppojtfrom the intermi't- . FIG. 11. The temperature dependence of the shear sgekd
tent character of flow at the interface, as demonstrated in Figine) at coexistence as a function of temperature calculated from the

9. After all, the interface exhibits its owemporalseparation  erosion model described in the text. The nonequilibrium coexist-
between a state of zero shear flow with small amplitudesnce states from simulation are indicated as open squares.
structural fluctuations and one of significant shear flow with
disruption of order. E .

The mechanical character of the shear-induced disorder- Rerosion™ C(T)J dyX(¥) ¥iocal(y)- (6)
ing at the interface emphasises the essential nonthermal char- o

acter of the fluctuations involved. The flow field couples.l_his expression is presented as the simplest mathematical

?hwte ?ﬁ emfu;a:ly .to Eet?li'itm sAhear modgs OLFhﬁ SOI!'d’.g”c\i/.mgrepresentation of the fact that erosion occurs only in that
em through to Instability. A process in Which a iquid dis= 4 me jn which the crystalline order and an appreciable

rupts the solid surface against which it flows seems to quiteshear rate coexist. The expression makes no claims to em-

naturally fit the description ofrosion The process described bodying any more physidsuch as an explicit mechanism of
here differs from the more familiar examples of erosion inyachanical disruptionthan this basic proposal.

that the liquid here is the melt of the solid. Instead of water |, picture of the nonequilibrium crystal-liquid coexist-

over stone, one should think of lava over stone. The greatetnce is that the state is determined by the balancing of the
the proximity to the solid melting point, the smaller the g o\ih rate driven by the persistent chemical potential dif-
amount of mechanical work the flowing liquid must supply ference and the rate at which the shearing melt is eroding the
to disrupt the solid. So while conventional erosion is oftengyface. At small undercoolings, the crystallization rate ex-
accompanied by turbulent liquid flow, here the flow is ex-pected for a rough interface is proportional to chemical po-
plicitly laminar. (A qualification is needed here. The actual ianiial difference between the two phases. Expanding to the
shear rates imposed here, while small in terms of NEMDg\est order in supercoolind T=Ty—T (and neglecting

simulations, still correspond to enormous shear rates of thg,o contribution from the crystal strafi2]), we can express
order of 13 s*. The stability of the lamellar flow is due to ¢ crystallization rateR,, as

the small dimension of the simulation cegll.
We are unaware of a molecular-level description of ero- Roa=B(T)AT 7
sion. Ajdari[11] has presented a phenomenological model of a=B(TAT. @
the shear disruption of aggregates at a wall “peeling of Equating the erosion and crystallization rates results in the

Fhe aggregat_e, as it |s.descr|tjekiy. the |ncIu3|on_ .Of a term following relation between temperatufeand shear rate pro-
in the equation of motion of the interface position that in-

creases linearly with shear stress above some threshoftf Yiocal(y) at coexistence:

value. Here, we shall estimate the rate of erosion as follows.

Forcing the material at the interface to slide is assumed to _ ” :

disrup?ordering, at least with respect to the adjacent solid if T=Tw AﬁmdyX(y) ViocallY): ®

not the in-layer order, and so reduce the stability of this

material. Such disrupted material will be deemed “eroded."where A=C/B. A quantitative treatment of crystal growth
We neglect here the possible stability of a sliding crystalfrom the Lennard-Jones melt has been reported by Huitema
phase, an issue that certainly deserves to be considered ma#eal. [12], which provides the explicit value @&(T). How-
carefully. We shall assume that the local rate at which th%ver, in the absence of any estimate of the rate con€témt
crystalline order is disrupted by shear flow is proportional togrosion, we shall treat the ratiof kinetic coefficients as a
the product of the local degree of crystalline order and the:onstant to be adjusted to optimize the fit with the observed
local strain rate, that iSXvy,,.a- Erosion, therefore, explic- coexistence curve with the result that 0.45. We compare

itly involves the penetration of the shear flow into the crystal,the coexistence curve calculated using &8y .with the simu-

as described in Sec. IV. We propose that the overall rate dated coexistence points in Fig. 11 and find a reasonable fit.
erosion of the interface is simply the average rate of crystaNote that the relation between temperature and the coexist-
disruption through the interface, i.e., ence shear stress in E®) is implicit through the strain rate
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profile. This implicit relation incorporates the details of the  Stable, reproducible shear banding has been reported in

flow penetration into the solid. simulations of a glass-forming mixtuf&3]. While this non-
equilibrium coexistence involves a diffuse interfa@es de-
VI. CONCLUSION termined by the shear velocity profilsimilar to the interface

) o described in this paper, there are some important differences

We have examined the crystal-liquid interface along theyetween the two phenomena. The shear banding of the model
nonequilibrium coexistence line characterizing a stationar)@a:ss occurs in the absence of long range order in either
interface between the strained fcc crystal of Lennard-Jon%hasen; it involves nonlinear response of the bulk phase
particles and the shearing melt. The shear flow is found tQnq it lacks the true plateau in the stress-strain rate curve,
penetrate to a depth that increases significantly as one moveRaracteristic of the two-phase coexistence. It would be in-
away from the equilibrium coexistence. While shear ﬂOWteresting to see if the shear banding in the glass could be

and crystal structure share the same volume, they do not dgescribed in terms of some sort of coexistence between
so at the same time, but rather alternate intermittently bepnases distinguished by local order.

the interface region can, thus, be characterized by markeghoyld be relatively straightforward to observe experimen-
stick-slip behavior with the slip accompanied by an abruptgly. Such experiments would be particularly interesting in
disordering, reminiscent of that observed in stick-slip flow inigrms of the insight they could provide on the mechanical
confined liquid films[10]. A similar intermittent motion has  roperties of the interface. Our results suggest, for example,
been inferred in the case of low shear rates in “soft” crys-inat the application of a shear stress roughly half that of the
talline phases. In their light scattering study of shearing inje|d stress will result in a 6% decrease in the coexistence
colloidal crystals, Ackerson and Clarkg] concluded that at  temperature. To avoid nonlinear behavior in the liquid, low
low shear rates the crystal layers “jumped” from registry 10 gtresses and/or high viscosities are optimal. Soft solids with
registry with respect to the adjacent layers. Nothing in thgy yield stresses are therefore interesting candidates. The
preceding analysis precludes the behavior reported here fQfrfactant dodecyltrimethylammonium chloride forms a stiff
the Lennard-Jones system from applying to the hard spherg pic phase in a 50 wt% aqueous solut[dd]. The cubic
model, often used in the context of sterically stabilized CO"phase disorders to an isotropic micellar phase above the
loids. _ o __melting point 90 °C and has a yield stress of the order &f 10
The erosion model, presented here, highlights the imporpa scaling our simulation results with these values, we pre-
tant role that interfaces can play in establishing coexistencgjct that, at shear stresses of around 500 Pa, we would see

under nonequilibrium conditions. This is in contrast to thepe cubic-isotropic coexistence temperature lowered by
case at equilibrium where, in the thermodynamic limit, thegpout 20 °C.

interface contribution is negligible. The results of this work

can be summarized as follows. The diffuse crystal-melt in-

fcerface represents a mechanically fragile structure, and coex- ACKNOWLEDGMENTS

istence under shear cannot occur unless this interface is
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