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Structure and stability of the interface between a strained crystal and a shearing liquid

Scott Butler and Peter Harrowell*
School of Chemistry, University of Sydney, New South Wales 2006, Australia

~Received 13 November 2002; published 22 May 2003!

The results are presented from nonequilibrium molecular dynamics simulations of the stationary nonequi-
librium interface between a shearing liquid and its strained crystal. The penetration of the velocity field into the
crystal is shown to increase with an increasing shear stress along the coexistence line. Slip and creep com-
pensate within the interfacial region to produce an effective flow boundary well described, macroscopically, by
a standard stick boundary condition. The shear flow within the interface is found to involve intermittent
stick-slip motion, with the slip accompanied by disordering. A theoretical treatment of the interfacial stability
is proposed, based on the competing rates of crystallization and erosion, and is found to provide a reasonable
representation of the simulated stress-temperature phase diagram.
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I. INTRODUCTION

In this paper, we consider the behavior of the crystal-m
interface when subjected to a shear stress. Unlike the s
solid-liquid interface between two substances with wid
differing melting points, the crystal-melt interface is structu
ally diffuse, extending over 3–10 molecular diameters. W
kind of boundary does such a fragile interface pose for
flow field? What influence does this flow have back on
interface itself? There is considerable interest in using co
puter simulations to understand the molecular nature of
liquid velocity and stress fields in the vicinity of solid wal
@1#. The problem we consider here is rather different due
the proximity to the solid’s melting point. It is possible, fo
example, to completely melt the solid if a sufficiently hig
shear rate is imposed on the liquid.

In Refs. @2,3#, we have reported the stable coexisten
between a strained crystal made up of Lennard-Jones
ticles and its shearing melt as observed in nonequilibri
molecular dynamics~NEMD! simulations. We have demon
strated that the nonequilibrium coexistence can neither a
from the mechanical instability of the bulk solid nor from th
minimization of some nonequilibrium analog of a free e
ergy. The reader is referred to these papers for details of
argument. At equilibrium, coexistence is determined by
condition that the chemical potentials of the two phases
equal. In the case of the nonequilibrium coexistence betw
crystal and liquid, we have eliminated any extension of t
condition to include nonequilibrium analogs of the chemi
potential of the bulk phases. Instead, we must replace
condition of chemical potential equality with the more ge
eral condition that the nonequilibrium crystal-liquid interfa
is stationary. Previously, Olmsted and Lu@4# have argued
that phase coexistence in a liquid of rigid rods under sh
requires the inclusion of gradient terms in the equations
motion. The apparent generality of the importance of
interfacial regions in establishing coexistence under sh
motivates this NEMD study of a stationary nonequilibriu
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interface. In this paper, we explore the structure and fluct
tions of the crystal-liquid interface along the nonequilibriu
coexistence line. We propose that the observed nonequ
rium coexistence is the result of balancing the rate of cry
growth with the rate of surface erosion by the shearing liq
@2#.

II. ALGORITHM AND METHODOLOGY

The model and algorithm have been described in so
detail previously@2,3#, and so we present here only a sum
mary of our calculations. Our simulations involve the int
gration of classical equations of motion forN52592 par-
ticles interacting via a 12-6 Lennard-Jones potentialf(r ),

f~r !54e@~a/r !122~a/r !6#. ~1!

The following units are used throughout the paper: timet is
in units oft5a(m/e)1/2, mass has units ofm, distancer is in
units ofa, the temperatureT is in units ofe/kB , and pressure
and stress are in units ofe/a2. For reference, the averag
collision time ~defined as the first zero of the velocity aut
correlation function! is ;0.1t.

Periodic boundary conditions apply along thex and z
axes. Walls bound either end of the cell along they axis. The
walls were modeled by pinning particles to specified po
tions, either those of a perfect~111! layer of the face-
centered-cubic~fcc! lattice or to those of a single liquid con
figuration, via a harmonic potential. The spring constant u
for this potential waskspring557.1. Wall particles also inter
act with each other and the liquid particles by the sa
Lennard-Jones potential as govern the liquid-liquid inter
tions.

All of the results presented are for a normal press
Pyy53.5 and a time step ofDt50.004. A constant shear rat
was applied by moving each wall by a displacement ofDx

50.5ġLyDt per time step in opposite directions, whereġ is
the applied shear rate,Ly is the distance between the wall
andDt is the time step. The crystalline wall was aligned su
that the shear gradient lies normal to the~111! plane, while
the shear flow direction~along thex axis! lies parallel to the
easy slip~011! direction.
ic
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Two types of thermostats have been used, a wall ther
stat and a homogeneous thermostat. The wall thermostat
caled only the temperature of the wall particles, system p
ticles being indirectly thermostated through collision w
the walls. The temperature was calculated using

Twall5
1

3Nwall
S (

i 51

Nwall

pix
2 1piy

2 1piz
2 D , ~2!

where pix refers to thex component of the momentum o
particle i and Nwall is the number of particles in the wal
This method of thermostating produces a temperature gr
ent between the heat source, in this case the frictional hea
in a shearing liquid, and the heat sinks in the walls.
alternative thermostat avoids this gradient by applying a
mogeneous rescaling of the components of the particle
menta along the shear gradient~y! and vorticity ~z! direc-
tions. To accommodate the spatial variation in the two-ph
system, we divided the cell into layers in thex-z plane, the
height of each layer is equal to the spacing between fcc~111!
layers in the perfect crystal structure. For each cell, the
erage momentâpy&cell and ^pz&cell was calculated, and th
values ofpy and pz for each particle within the layer wer
rescaled to maintain a constant temperature in these com
nents. As reported in Refs.@2,3#, we find no effect of the
thermostat choice on the position of the nonequilibriu
solid-liquid coexistence lineif the interfacial temperature i
used as the system temperature in the case of wall the
stats.

The instantaneous normal pressurePyy was calculated us
ing the expression

Pyy5
1

V (
i

qiyFiy1(
i

piy
2 , ~3!

whereFiy and qiy are the component of the total force o
particle i and the position vectors for particlei along they
Cartesian axes, respectively. A Nose´-Hoover algorithm@5#
was used to hold the average value ofPyy constant, the time
evolution of they dimension of the cell,Ly , being

dLy

dt
5

1

QP
~Pyy2Pyy

0 !, ~4!

whereLy is they dimension of the cell,Pyy is the instanta-
neous value of the normal pressure,Pyy

0 is the desired norma
pressure, andQP determines the rate at which excursio
from the target value are damped. A value ofQP510 was
used in all constantPyy simulations.

III. STRUCTURE AND FLOW AT THE STATIONARY
NONEQUILIBRIUM INTERFACE

A. The nonequilibrium coexistence curve

In Refs.@2,3# we established that the Lennard-Jones liq
under shear can coexist with its crystalline solid. Specifica
we studied the fcc crystal whose interface was parallel to
~111! plane and with shear flow parallel to the~110! direc-
tion. The plot of the coexistence shear stress against temp
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ture, presented in Fig. 1, can be interpreted as a nonequ
rium phase diagram in the stress-temperature plane@3#. ~The
dashed line in Fig. 1 corresponds to the yield stress of
bulk crystal@3#.! We have shown@2,3# that the relative vol-
umes of the two phases obeys a standard lever rule
respect to the overall shear rate of the sample. We shall
examine the crystal-liquid interface at a number of poi
along the nonequilibrium coexistence line.

B. Interface structure

To measure the in-plane hexagonal order within lay
parallel to the walls, we introduceX( l ), the in-plane order of
the l th layer, defined as

X~ l !5
1

Nl
(
i 51

Nl 1

Ni~Ni21! (
j 51

Ni

(
kÞ j

Ni

cos~6u i jk !, ~5!

whereu j ik is the angle in thex-z plane betweenr i j andr ik ,
the vectors joining the centers of particlei and two of its
nearest neighbors, particlesj andk. Ni is the number of near-
est neighbors to particlei andNl is the number of particles in
the l th layer. A perfect in-plane hexagonal order would gi
a value ofXi51. Particles were considered nearest neig
bors of particlei if they lay within a distance ofr hcp/0.8 in
the x-z plane andr lay/3 in they direction, wherer hcp is the
distance between the nearest neighbors in the perfect hex
nal structure andr lay is the distance between 111 layers
the perfect fcc structure.

The average profiles of X are plotted forT50.7, 0.788,
and 0.85 in Fig. 2 against the displacementy along the sur-
face normal. A homogeneous thermostat has been used
all simulations reported here. The equilibrium melting te
perature is 0.907. The origin along they axes is defined as
the point at which the instantaneous value ofX equals 0.5.
Apart from a slight broadening of the interface at the low
temperature~and highest shear stress!, we find very little
variation in the interface structure as we move along
nonequilibrium coexistence line.

C. Velocity field and effective boundary conditions

In contrast to the interfacial structure, the profile of t
average velocity along the gradient direction exhibits a s

FIG. 1. The shear stresss at crystal-liquid coexistence as
function of temperatureT. ~The solid line is simply a guide to the
eye.! Data obtained from wall and homogeneous thermostats
included. In the former case, where there is a temperature grad
we have used the interfacial temperature to define the approp
temperature for the state. The crystal yield stress is shown
dashed line.
3-2
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STRUCTURE AND STABILITY OF THE INTERFACE . . . PHYSICAL REVIEW E 67, 051503 ~2003!
nificant change with temperature and stress. We have ca
lated the average velocity along the flow directionvx as a
function of y, again measured from an origin fixed on th
surface position. In Fig. 2, we also plot the average sh
velocity againsty at the same three points along the coex
ence line. We note two changes as one moves along
nonequilibrium coexistence line towards lower temperatu
First, the velocity field penetrates into regions of higher cr
talline order. Second, the gradient of the velocity increase
the liquid adjacent to the surface. This increase in the st
rate occurs within the interfacial region suggesting an
hanced slip associated with the sliding of ordered layers

We shall quantify surface slip in terms of a ‘‘slip length
To define this length, we extrapolate the velocity field
from the interface to the point where the~extrapolated! ve-
locity equals that of the bulk crystal. This construction
shown in Fig. 3. Typically@6#, one would then define a slip
length as the distance along the surface normal between
point and the position of the wall. A length of zero corr
sponds to stick boundary conditions, while a negative len
characterizes the degree of boundary slip between crysta
liquid. A creep flow at the wall, indicated schematically

FIG. 2. The profile for the crystalline order parameterX, defined
in Eq. ~5!, and the average velocity^vx& in the direction of the shea
flow at T50.7 ~squares!, 0.788 ~crosses!, and 0.85~circles!. The
profiles have been averaged over 120 000 time steps. The orig
y is defined as the point at whichX50.5 in the average structur
profile. The velocity^vx& is measured relative to the crystallin
wall.

FIG. 3. Qualitative sketches of flow velocity profiles at a diffu
interface for the cases, where~a! slip and~b! creep flow occur in the
interface region. The position of the wall boundary as the po
where the shear velocity drops below some chosen thresho
indicated. The appearance of negative and positive stick lengtj
in ~a! and ~b!, respectively, are indicated.
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Fig. 3, would give a positive slip length. In the case of t
diffuse interface, there is some ambiguity as to which de
nition of the interfacial position is the most physically re
evant. A definition based on interfacial structure, for e
ample, has no obvious relevance with respect to fluid flo
Instead, we shall define the ‘‘hydrodynamic’’ surface to lie
the point at which the actual velocity difference betwe
crystal and liquid drops first below some small thresho
chosen here to be 0.06. As shown in Fig. 4, the calcula
slip lengths atT50.7, 0.788, and 0.85 are, respectively, 2
1.4, and 1.1. These lengths are considerably smaller than
interfacial profile width of roughly 4, measured fromX equal
to 90% of the bulk crystal value toX equal 10% of the
crystal value. Despite the clearly nonlinear character of
flow field at the lowest temperature, these small slip leng
suggest that the crystal-melt interface behaves like a sim
stick boundary. We conclude that the enhanced slip in
liquid side of the interface is almost completely compensa
by the creep flow deeper into the crystal.

How does the velocity field correlate with the structur
field? In Fig. 5, we combine the information in Figs. 3 and
and plot the average velocity~measured with respect to th
crystal wall! against the crystal orderX for the three state
points. We find that, as the temperature decreases~and shear
stress increases!, slipping occurs at layers of increasing o
der. We shall define the onset of slipping to be where
average velocity exceeds 0.06. The definition is, of cou
arbitrary. We can then determine the maximum value of cr
tal order, calledXslip , at which slipping takes place. Th

in

t
is

FIG. 4. The graphical estimate of the stick length from the c
culated shear profiles atT50.7, 0.788, and 0.85.

FIG. 5. The average flow velocitŷvx& relative to the crystalline
wall is plotted against the in-layer order parameterX for T50.7,
0.788, and 0.85. The figure highlights the increasing penetratio
shear velocity into regions of substantial crystalline order.
3-3
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S. BUTLER AND P. HARROWELL PHYSICAL REVIEW E67, 051503 ~2003!
ratio Xslip /Xxtl is plotted againstT in Fig. 6. We find a
steady increase in this ratio with decreasing temperature
this ratio approaches 1 the penetration depth of the s
flow into the crystal will diverge.

The concept of a penetration depth of the shear flow i
the crystal appears to be a useful way of characterizing
nonequilibrium interface. We have defined this lengthd as
the distance betweenX(y)50.1 andX(y)5Xslip , as shown
in Fig. 6. A plot of the penetration depthd vs the shear stres
is shown in Fig. 7. We find that the interface of the Lenna
Jones crystal is penetrated to a depth that increases sub
tially as the shear stress is increased. We conclude tha
nonequilibrium crystal-liquid interface includes a layer
shearing crystal whose thickness increases rapidly with s
stress. Previous simulations of the nonequilibrium phase
gram of a colloidal crystal@7,8# considered the coexistenc
between ashearingcrystal and the disordered phase. Lig
scattering experiments@9# and simulations@7,8# demonstrate
that the shearing colloidal crystals become unstable at s
critical shear rate. Such an instability would curtail the
verging thickness of the shearing layer at the crystal-liq
interface. Simulations at higher shear stresses will be ne
sary to understand the role that such an instability might p
in the Lennard-Jones system.

FIG. 6. A plot ofXslip /Xxtl vs shear stresss along the coexist-
ence curve.

FIG. 7. The penetration depthd ~as defined in the text! plotted
against shear stresss.
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IV. FLUCTUATIONS AT THE NONEQUILIBRIUM
INTERFACE

In Fig. 8, we plot the variance of the in-layer structureX
as a function of the position through the interface, relative
the value ofXxtl , the structure in the bulk crystal. Note th
a different definition of the zero along they axes has been
used here. The one used in the preceding section would
strain the fluctuation in order aty50 to be zero. In Figs. 8
and 10 we have defined the origin to be the point at wh
the time average ofX equals 0.5. We find a nonmonoton
dependence on the amplitude of structural fluctuations a
function of how far one has moved along the nonequilibriu
coexistence line from the point of zero shear stress. Be
ning at TM50.907, the equilibrium coexistence point, th
amplitude of the fluctuations at the center of the interfa
drops sharply as the shear rate of the liquid increases and
temperature decreases. This trend is eventually reversed
T50.7, the lowest temperature and highest shear stress
ied here, the structural fluctuations have increased in am
tude compared with the fluctuations atT50.788. These ob-
servations suggest the following picture. The therm
interfacial fluctuations present at equilibrium are suppres
by the combination of liquid shear flow and decreasing te
perature. With increasing shear rate and the associated
crease in flow penetration into the crystal region, the am
tude of interfacial fluctuations eventually increase as she
driven fluctuations begin to dominate.

The structural fluctuations of the interface at high liqu
shear rates must be strongly coupled to the fluctuations in
shear velocity field in the liquid. There is, of course, n
analog to this coupling at the equilibrium coexistence. In F

FIG. 8. The variancê (Xi2^Xi
2&)2&/(Xxtl)

2 of the interfacial
structure through the interface at equilibrium (T50.907) and three
nonequilibrium states:T50.85, 0.788, and 0.7. Note the nonmon
tonic temperature dependence of the interfacial structural fluc
tions with temperature. The origin ofy is chosen here as the pos
tion where the average order parameter equals 0.5, i.e., theaverage
interfacial position rather than theinstantaneousposition.
3-4



ru

r-
an
tr
e
th

ry
ru
ow
te
re
is
he
ie
s
an
lip
e
nd

a
th

ross
ng
ten-
ing
act
ase
ve
’’
the
the
ult
the
er-
a-
a

m
ist-

.
o
su-
ial
on.
eat-

ion

ia

ar
lcu
la
e

e

he

s in
yer

STRUCTURE AND STABILITY OF THE INTERFACE . . . PHYSICAL REVIEW E 67, 051503 ~2003!
9 we have plotted the time dependence of the in-layer st
ture X and the strain ratedg/dt for a single layer in the
nonequilibrium crystal-liquid interface atT50.85 ~homoge-
neously thermostated!. This particular layer has a time ave
aged structural order parameter of slightly less than 0.5
so represents the behavior at the interface center. The s
ratedg/dt of a layer is calculated as the difference betwe
the average shear velocity of a layer and its neighbor on
crystal side, divided by the spacing between layers. The c
talline order in the selected layer undergoes large and ab
fluctuations in time. The fluctuations in the strain rate sh
similar abrupt variations, but of a more bimodal charac
with the layer either at rest with respect to its more orde
neighbor or slipping at a relatively well-defined rate. Th
transient stick-slip behavior is strongly correlated with t
structural fluctuations. Layer slipping is always accompan
by layer disordering. This correlation can be quantified a
negative cross correlation between fluctuations in order
shear velocity, shown in Fig. 10. Simulations of stick-s
behavior of thin liquid film confined between crystallin
walls @10# exhibit a similar correlation between shearing a
disorder.

V. EROSION AND THE KINETIC CHARACTER
OF NONEQUILIBRIUM COEXISTENCE

The stability of coexistence between any two phases c
in principle, be described in terms of an equality between

FIG. 9. The time dependence of the structureX and the strain
ratedg/dt averaged over a single layer atT50.85 under a homo-
geneous thermostat. The layer was chosen as the one immed
adjacent~on the liquid side! to the point at whichX50.5. Note the
clear transitions between stick and slip and the accompanying l
structural fluctuations. The strain rate of a single layer was ca
lated as the difference between the average shear velocity of a
along the flow direction and its neighbor on the crystal side, divid
by the spacing between layers. The data forX anddg/dt have been
coarse-grained in time to reduce noise, the average taken ov
time interval of 3t.
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rates of exchange of material between the two phases ac
the interface. The thermodynamic prescription of defini
coexistence as the equality of the respective chemical po
tials is considerably more convenient, since it avoids hav
to deal with questions of specific kinetic processes, the ex
character of the interface, and so on. In the present c
involving a crystal and a shearing liquid, however, we ha
shown @2,3# that no reasonable definition of an ‘‘effective
chemical potential for the shearing liquid can account for
observed coexistence with the strained crystal. From
point of view of the kinetic picture of coexistence, this res
implies that the rates at which particles fluctuate between
crystal and the shearing liquid depend explicitly on prop
ties of the nonequilibrium interface, in contrast to the situ
tion at equilibrium. In this section, we shall consider
simple treatment of the kinetics of the nonequilibriu
crystal-liquid interface to account for the observed coex
ence.

The following model involves two major simplifications
The first is to decompose the interfacial kinetics into tw
separate processes: crystallization governed only by the
percooling, and the mechanical disruption of the interfac
structure governed by the shear flow in the interfacial regi
The second assumption, dealt with below, concerns the tr
ment of the rate of mechanical disruption.

From the first assumption, we estimate the crystallizat

tely

ge
-
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d
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FIG. 10. The cross correlation̂ (Xi2^Xi&)(vxi2^vxi&)&/
(Xxtladgc /dt) between the fluctuations in the structure and t
shear velocity through the nonequilibrium interface atT50.85,
0.788, and 0.7. The actual strain rate at coexistencedgc /dt de-
pends on temperature. Note the increasing negative correlation
the interface associated with the disordering accompanying la
slip.
3-5
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S. BUTLER AND P. HARROWELL PHYSICAL REVIEW E67, 051503 ~2003!
rate as simply that expected for anonshearingliquid whose
supercoolingDT is the difference between the equilibriu
freezing temperature and the temperature of the superco
liquid. In Refs.@2,3#, we have shown that an increase in t
solid chemical potential due to shear strain is insignifica
While this provides some justification for the neglect of t
shear stress at this point, the real simplification introdu
here is the to neglect the role of the liquid shear flow
calculating this crystallization rate. The idea is that one c
‘‘bundle’’ all of the shear-structure interaction into a separ
rate of mechanical disruption of the surface. This concep
separation of the two interfacial processes draws some m
est encouragement~if not actual support! from the intermit-
tent character of flow at the interface, as demonstrated in
9. After all, the interface exhibits its owntemporalseparation
between a state of zero shear flow with small amplitu
structural fluctuations and one of significant shear flow w
disruption of order.

The mechanical character of the shear-induced disor
ing at the interface emphasises the essential nonthermal
acter of the fluctuations involved. The flow field coupl
quite specifically to certain shear modes of the solid, driv
them through to instability. A process in which a liquid di
rupts the solid surface against which it flows seems to q
naturally fit the description oferosion. The process describe
here differs from the more familiar examples of erosion
that the liquid here is the melt of the solid. Instead of wa
over stone, one should think of lava over stone. The gre
the proximity to the solid melting point, the smaller th
amount of mechanical work the flowing liquid must supp
to disrupt the solid. So while conventional erosion is oft
accompanied by turbulent liquid flow, here the flow is e
plicitly laminar. ~A qualification is needed here. The actu
shear rates imposed here, while small in terms of NEM
simulations, still correspond to enormous shear rates of
order of 1012 s21. The stability of the lamellar flow is due to
the small dimension of the simulation cell.!

We are unaware of a molecular-level description of e
sion. Ajdari@11# has presented a phenomenological mode
the shear disruption of aggregates at a wall~or ‘‘peeling of
the aggregate,’’ as it is described! by the inclusion of a term
in the equation of motion of the interface position that
creases linearly with shear stress above some thres
value. Here, we shall estimate the rate of erosion as follo
Forcing the material at the interface to slide is assumed
disrupt ordering, at least with respect to the adjacent soli
not the in-layer order, and so reduce the stability of t
material. Such disrupted material will be deemed ‘‘erode
We neglect here the possible stability of a sliding crys
phase, an issue that certainly deserves to be considered
carefully. We shall assume that the local rate at which
crystalline order is disrupted by shear flow is proportional
the product of the local degree of crystalline order and
local strain rate, that is,Xġ local . Erosion, therefore, explic
itly involves the penetration of the shear flow into the cryst
as described in Sec. IV. We propose that the overall rate
erosion of the interface is simply the average rate of cry
disruption through the interface, i.e.,
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Rerosion5C~T!E
2`

`

dyX~y!ġ local~y!. ~6!

This expression is presented as the simplest mathema
representation of the fact that erosion occurs only in t
volume in which the crystalline order and an apprecia
shear rate coexist. The expression makes no claims to
bodying any more physics~such as an explicit mechanism o
mechanical disruption! than this basic proposal.

Our picture of the nonequilibrium crystal-liquid coexis
ence is that the state is determined by the balancing of
growth rate driven by the persistent chemical potential d
ference and the rate at which the shearing melt is eroding
surface. At small undercoolings, the crystallization rate
pected for a rough interface is proportional to chemical p
tential difference between the two phases. Expanding to
lowest order in supercoolingDT5TM2T ~and neglecting
the contribution from the crystal strain@2#!, we can express
the crystallization rateRxtl as

Rxtl5B~T!DT. ~7!

Equating the erosion and crystallization rates results in
following relation between temperatureT and shear rate pro
file ġ local(y) at coexistence:

T5TM2AE
2`

`

dyX~y!ġ local~y!, ~8!

where A5C/B. A quantitative treatment of crystal growt
from the Lennard-Jones melt has been reported by Huite
et al. @12#, which provides the explicit value ofB(T). How-
ever, in the absence of any estimate of the rate constantC for
erosion, we shall treat the ratioA of kinetic coefficients as a
constant to be adjusted to optimize the fit with the obser
coexistence curve with the result thatA50.45. We compare
the coexistence curve calculated using Eq.~8! with the simu-
lated coexistence points in Fig. 11 and find a reasonable
Note that the relation between temperature and the coe
ence shear stress in Eq.~8! is implicit through the strain rate

FIG. 11. The temperature dependence of the shear stress~solid
line! at coexistence as a function of temperature calculated from
erosion model described in the text. The nonequilibrium coex
ence states from simulation are indicated as open squares.
3-6
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profile. This implicit relation incorporates the details of th
flow penetration into the solid.

VI. CONCLUSION

We have examined the crystal-liquid interface along
nonequilibrium coexistence line characterizing a station
interface between the strained fcc crystal of Lennard-Jo
particles and the shearing melt. The shear flow is found
penetrate to a depth that increases significantly as one m
away from the equilibrium coexistence. While shear flo
and crystal structure share the same volume, they do no
so at the same time, but rather alternate intermittently
tween ordered arrest and disordered flow. The shear flow
the interface region can, thus, be characterized by ma
stick-slip behavior with the slip accompanied by an abr
disordering, reminiscent of that observed in stick-slip flow
confined liquid films@10#. A similar intermittent motion has
been inferred in the case of low shear rates in ‘‘soft’’ cry
talline phases. In their light scattering study of shearing
colloidal crystals, Ackerson and Clarke@9# concluded that at
low shear rates the crystal layers ‘‘jumped’’ from registry
registry with respect to the adjacent layers. Nothing in
preceding analysis precludes the behavior reported here
the Lennard-Jones system from applying to the hard sp
model, often used in the context of sterically stabilized c
loids.

The erosion model, presented here, highlights the imp
tant role that interfaces can play in establishing coexiste
under nonequilibrium conditions. This is in contrast to t
case at equilibrium where, in the thermodynamic limit, t
interface contribution is negligible. The results of this wo
can be summarized as follows. The diffuse crystal-melt
terface represents a mechanically fragile structure, and c
istence under shear cannot occur unless this interfac
stable. The separation of the crystallization and erosion p
cesses is an artificial one, and we are currently developin
more systematic theoretical treatment of the solid-liquid
existence under shear that treats both features within a s
consistent framework.
hy
s.
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Stable, reproducible shear banding has been reporte
simulations of a glass-forming mixture@13#. While this non-
equilibrium coexistence involves a diffuse interface~as de-
termined by the shear velocity profile! similar to the interface
described in this paper, there are some important differen
between the two phenomena. The shear banding of the m
glass occurs in the absence of long range order in ei
‘‘phase’’; it involves nonlinear response of the bulk pha
and it lacks the true plateau in the stress-strain rate cu
characteristic of the two-phase coexistence. It would be
teresting to see if the shear banding in the glass could
described in terms of some sort of coexistence betw
phases distinguished by local order.

The nonequilibrium coexistence between crystal and m
should be relatively straightforward to observe experim
tally. Such experiments would be particularly interesting
terms of the insight they could provide on the mechani
properties of the interface. Our results suggest, for exam
that the application of a shear stress roughly half that of
yield stress will result in a 6% decrease in the coexiste
temperature. To avoid nonlinear behavior in the liquid, lo
stresses and/or high viscosities are optimal. Soft solids w
low yield stresses are therefore interesting candidates.
surfactant dodecyltrimethylammonium chloride forms a s
cubic phase in a 50 wt % aqueous solution@14#. The cubic
phase disorders to an isotropic micellar phase above
melting point 90 °C and has a yield stress of the order of 13

Pa. Scaling our simulation results with these values, we p
dict that, at shear stresses of around 500 Pa, we would
the cubic-isotropic coexistence temperature lowered
about 20 °C.
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